15 Reinforcement Learning for Building Environmental Control
نویسندگان
چکیده
During the last few decades, significant changes have been made in the area of building construction and management, especially regarding climate control and energy conservation. A significant turning point was reached in the early 70s with the oil crisis driving a movement for airtight buildings to minimize energy consumption. Unfortunately this turn resulted in a significant deterioration of the indoor air quality, raising health concerns around the world. This started a more involved study of human comfort with respect to air quality, lighting and temperature among other factors. There has been a drive in recent years to enhance current Building Environmental Management Systems (BEMS) with decision logic that takes into account all of the aforementioned issues namely thermal comfort, visual comfort, air quality and energy consumption. In order to maximize performance on all of the above indexes, the BEMS controller can use among other things the mechanical HVAC system, natural ventilation through windows, artificial lighting and shading devices. There are several aspects of the problem that make it attractive to intelligent control implementations. First of all the knowledge of the state of the indoor environment is imprecise due to several reasons. Localized phenomena can affect parameters like temperature or air velocity making it impossible to measure them accurately. Building environments are also characterized by changing dynamics due to human activity as well as equipment and building aging. Some parameters like clothing and activity type that are normally required to accurately estimate thermal comfort are difficult or even impossible to measure. Finally it should also be noted that despite the existence of mathematical models, thermal comfort remains a subjective measure and thus any such model is characterized by some error. On the other hand the action space is discrete and of small dimensionality. The nature of the problem therefore indicates that controllers that are able to generalize can offer a good performance. This is also suggested by the numerous controllers proposed in the literature ranging from classic PD/PID to fuzzy, neural networks and their combinations. For the reasons mentioned above, reinforcement learning is also suited for this problem, but it also has some unique features that make this approach of particular interest. Although a
منابع مشابه
Reinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملReinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic
In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...
متن کاملExperimental analysis of simulated reinforcement learning control for active and passive building thermal storage inventory Part 1. Theoretical foundation
This paper is the first part of a two-part investigation of a novel approach to optimally control commercial building passive and active thermal storage inventory. The proposed building control approach is based on simulated reinforcement learning, which is a hybrid control scheme that combines features of model-based optimal control and model-free learning control. An experimental study was ca...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کامل